
Bipolar Valued Fuzzy d-Ideals of d-algebra 

 

Mohana Rupa. SVD1, V. Lakshmi Prasannam2, Y. Bhargavi3 

 

1Research Scholar, Department of Mathematics,  

Krishna University, Machilipatnam, Andhra Pradesh, India 

2Professor & Head, Department of Mathematics,  

P.B.Siddhartha College of Arts & Science,  

3Department Of Mathematics, Koneru Lakshmaiah Education Foundation  

Vaddeswaram, Guntur, Andhra Pradesh, India-522502  

 

Abstract: In this paper, we introduce and study the concept of bipolar fuzzy d-ideal of d-

algebra and we characterize bipolar fuzzy d-ideal to the crisp d-ideal. Further, we prove that 

every bipolar fuzzy d-ideal is a bipolar fuzzy subalgebra and converse need not be. Also, we 

prove that the homomorphic image and inverse image of a bipolar fuzzy d-ideal is a bipolar 

fuzzy d-ideal. 
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1. Introduction 
 

    The concept of fuzzy subsets of a set was introduced by Zadeh, L.A. [7] in 1965. After 

that, there are several kinds of fuzzy set extensions in the fuzzy set theory, for example, 

intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, etc. In fuzzy sets the 

membership degree of elements range over the interval [0,1]. In 1994, Zhang [8] introduced 

the concept of bipolar-valued fuzzy sets which is an extension of fuzzy sets whose 

membership degree range is enlarged from the interval [0, 1] to [−1, 1].  In a bipolar-valued 

fuzzy set, the membership degree 0 means that the elements are irrelevant to the 

corresponding property, the membership degree (0,1] indicates that elements somewhat 

satisfy the property and the membership degree [-1,0) indicates that elements somewhat 

satisfy the implicit counter-property. 

   Naggers, J.  and Kim, H.S. [5] introduced and studied the concept of d-algebra, which is 

another generalization of BCK-algebras and investigated relations between d-algebras and 

BCK-algebras. Further, they discussed ideal theory in d-algebra. After that, they introduced 

the concepts of fuzzy d-ideal in d-algebras. Recently, Mohana Rupa, SVD., Lakshmi 

Prasannam, V. and Bhargavi, Y. [4] introduced and studied the concept of bipolar fuzzy d-

algebra. This paper is a sequel to our study. 

  In this paper, we introduce and study the concept of bipolar fuzzy d-ideal of d-algebra and 

we characterize bipolar fuzzy d-ideal to the crisp d-ideal. Further, we prove that every bipolar 

fuzzy d-ideal is a bipolar fuzzy subalgebra and converse need not be. Also, we prove that the 

homomorphic image and inverse image of a bipolar fuzzy d-ideal is a bipolar fuzzy d-ideal. 
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2. Preliminaries 
 

   In this section we recall some of the fundamental concepts and definitions, which are 

necessary for this paper. 

Definition 2.1[5]: A nonempty set 𝑋 with a constant 0 and a binary operation ∗ is called a d-

algebra, if for all 𝑥, 𝑦 ∈ 𝑋 it satisfies the following axioms: 

1.  𝑥 ∗  𝑥 =  0 

2.  0 ∗  𝑥 =  0 

3.  𝑥 ∗  𝑦 =  0 𝑎𝑛𝑑 𝑦 ∗  𝑥 =  0 ⇒  𝑥 =  𝑦. 

We refer 𝑥 ≤ 𝑦 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 ∗ 𝑦 = 0. 

 

Definition 2.2[6]: Let 𝐼 be a non-empty subset of a 𝑑-algebra 𝑋, then 𝐼 is called d-ideal of 𝑋 

if (𝑖). 𝑥 ∗  𝑦 ∈  𝐼 𝑎𝑛𝑑 𝑦 ∈ 𝐼, 𝑡ℎ𝑒𝑛 𝑥 ∈ 𝐼 
(𝑖𝑖). 𝑥 ∈ 𝐼 𝑎𝑛𝑑 𝑦 ∈ 𝑋, 𝑡ℎ𝑒𝑛 𝑥 ∗ 𝑦 ∈ 𝐼. 

 

Definition 2.3[3]: Let 𝑋 and 𝑌 be two 𝑑-algebras. A mapping 𝑓: 𝑋 → 𝑌 is called a 

homomorphism if 𝑓(𝑥 ∗ 𝑦) = 𝑓(𝑥) ∗ 𝑓(𝑦), for all 𝑥, 𝑦 ∈ 𝑋.  

 

Definition 2.4[7]: Let 𝑋 be a non-empty set. A fuzzy subset 𝜇 of the set 𝑋 is a mapping 

𝜇: 𝑋 → [0,1]. 
 

Definition 2.5[8]: Let 𝑋 be the universe of discourse. A bipolar-valued fuzzy set 𝜇 in 𝑋 is an 

object having the form 𝜇 = {𝑥, 𝜇−(𝑥), 𝜇+(𝑥)/𝑥 ∈ 𝑋}, where 𝜇− ∶  𝑋 →  [−1, 0] and 

𝜇+: 𝑋 →  [0, 1] are mappings.  

For the sake of simplicity, we shall use the symbol 𝜇 =  (𝑋; 𝜇−, 𝜇+) for the bipolar-valued 

fuzzy set 𝜇 = {𝑥, 𝜇−(𝑥), 𝜇+(𝑥)/𝑥 ∈ 𝑋}, and use the notion of bipolar fuzzy sets instead of the 

notion of bipolar-valued fuzzy sets. 

 

Definition 2.6[8]: Let 𝜇 =  (𝑋; 𝜇−, 𝜇+) be a bipolar fuzzy set and 𝑠 × 𝑡 ∈ [−1, 0] × [0, 1], 
the sets 𝜇𝑠

𝑁 = {𝑥 ∈ 𝑋/𝜇−(𝑥) ≤ 𝑠} and 𝜇𝑡
𝑃 = {𝑥 ∈ 𝑋/𝜇+(𝑥) ≥ 𝑡} are called negative 𝑠-cut 

and positive 𝑡-cut respectively. For 𝑠 × 𝑡 ∈ [−1, 0] × [0, 1], the set 𝜇(𝑠,𝑡) = 𝜇𝑠
𝑁 ∩ 𝜇𝑡

𝑃 is called 

(𝑠, 𝑡)-set of 𝜇 =  (𝑋; 𝜇−, 𝜇+). 

 

Definition 2.7[3]: Let 𝑓: 𝑋 → 𝑌 be a homomorphism from a set 𝑋 onto a set 𝑌 and let 𝜇 =
 (𝑋; 𝜇−, 𝜇+) be a bipolar fuzzy set of 𝑋 and 𝜎 = (𝑌; 𝜎−, 𝜎+) be two bipolar fuzzy set of 𝑌, 

then the homomorphic image 𝑓(𝜇) of 𝜇 is 𝑓(𝜇) = ((𝑓(𝜇))
−

, (𝑓(𝜇))+) defined as for all 𝑦 ∈

𝑌 

(𝑓(𝜇))
−

(𝑦) = {
max{𝜇−(𝑥)/𝑥 ∈ 𝑓−1(𝑦)} , 𝑖𝑓 𝑓−1(𝑦) ≠ ∅

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

and 

 

(𝑓(𝜇))
+

(𝑦) = {
max{𝜇+(𝑥)/𝑥 ∈ 𝑓−1(𝑦)} , 𝑖𝑓 𝑓−1(𝑦) ≠ ∅

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The pre-image 𝑓−1(𝜎) of 𝜎 under f is a bipolar set defined as (𝑓−1(𝜎))−(𝑥) = 𝜎−(𝑓(𝑥)) and 

(𝑓−1(𝜎))+(𝑥) = 𝜎+(𝑓(𝑥)), for all 𝑥 ∈ 𝑋. 

 

Definition 2.8[3]: Let 𝜇 be a fuzzy set of a d-algebra 𝑋. Then, 𝜇 is said to be fuzzy d-ideal of 

𝑋 if it satisfies for all 𝑥, 𝑦 ∈ 𝑋 
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(𝑖). 𝜇(𝑥) ≥ min {𝜇(𝑥 ∗ 𝑦), 𝜇(𝑦)}  

(𝑖𝑖). 𝜇(𝑥 ∗ 𝑦) ≥ 𝜇(𝑥)  

 

3. Bipolar Fuzzy 𝒅-algebra 
 

  In this paper, we introduce and study the concept of bipolar fuzzy d-ideal of d-algebra and 

we characterize bipolar fuzzy d-ideal to the crisp d-ideal. Further, we prove that every bipolar 

fuzzy d-ideal is a bipolar fuzzy subalgebra and converse need not be. Also, we prove that the 

homomorphic image and inverse image of a bipolar fuzzy d-ideal is a bipolar fuzzy d-ideal. 

  Throughout this section 𝑋 stands for a d-algebra unless otherwise mentioned. 

 

Now, we introduce the following. 

 

Definition 3.1: A Bipolar fuzzy set 𝜇 = (𝑋; 𝜇−, 𝜇+) in 𝑋 is called a bipolar fuzzy d-ideal if  it 

satisfies the following properties: for any 𝑥, 𝑦 𝜖 𝑋, 

(𝑖).  𝜇−(𝑥) ≤ 𝑚𝑎𝑥{𝜇−(𝑥 ∗ 𝑦), 𝜇−(𝑦)}  

(𝑖𝑖). 𝜇−(𝑥 ∗ 𝑦) ≤ 𝜇−(𝑥) 
(𝑖𝑖𝑖).  𝜇+(𝑥) ≥ min {𝜇+(𝑥 ∗ 𝑦), 𝜇+(𝑦)}  

(𝑖𝑣). 𝜇+(𝑥 ∗ 𝑦) ≥ 𝜇+(𝑥)  
 

Example 3.2: Consider a d-algebra 𝑋 = {0, 1, 2} with the following Cayley table 

* 0 1 2 

0 0 0 0 

1 2 0 2 

2 1 1 0 

 

Define a bipolar fuzzy se 𝜇 = (𝑋; 𝜇−, 𝜇+), where 𝜇−: 𝑋 → [−1, 0] and 𝜇+: 𝑋 → [0, 1] as  

 

𝜇−(𝑥) = {

−0.7,   𝑖𝑓 𝑥 = 0
−0.5,   𝑖𝑓 𝑥 = 1
−0.4,   𝑖𝑓 𝑥 = 2

 and  𝜇+(𝑥) = {

0.9, 𝑖𝑓 𝑥 = 0
0.8, 𝑖𝑓 𝑥 = 1
0.6,   𝑖𝑓 𝑥 = 2

 

Then 𝜇 is a bipolar fuzzy d-ideal.  

 

Proposition 3.3: If 𝜇 = (𝑋; 𝜇−, 𝜇+) be a bipolar fuzzy d-ideal of 𝑋, then 𝜇−(0) ≤ 𝜇−(𝑥) and 

𝜇+(0) ≥ 𝜇+(𝑥), for all 𝑥 ∈  𝑋. 

 

Proof: Let 𝑥 ∈ 𝑋. 

Now, 𝜇−(0) =  𝜇−(𝑥 ∗ 𝑥) ≤ 𝜇−(𝑥) and 𝜇+(0) = 𝜇+(𝑥 ∗ 𝑥) ≥ 𝜇+(𝑥). 

 

Lemma 3.4: Let 𝜇 = (𝑋; 𝜇−, 𝜇+) be a bipolar fuzzy d-ideal of 𝑋. If 𝑥 ∗ 𝑦 ≤ 𝑧, then 𝜇−(𝑥) ≤
max {𝜇−(𝑦), 𝜇−(𝑧)} and 𝜇+(𝑥) ≥ min {𝜇+(𝑦), 𝜇+(𝑧)}  for all 𝑥, 𝑦, 𝑧 ∈  𝑋. 

 

Proof: Let 𝑥, 𝑦, 𝑧 ∈  𝑋 such that 𝑥 ∗ 𝑦 ≤ 𝑧. 

Then (𝑥 ∗ 𝑦) ∗ 𝑧 = 0 

Now, 𝜇−(𝑥) ≤ max {𝜇−(𝑥 ∗ 𝑦), 𝜇−(𝑦)}  ≤ max {max {𝜇−((𝑥 ∗ 𝑦) ∗ 𝑧), 𝜇−(𝑧)}, 𝜇−(𝑦)} =
 max {max {𝜇−(0), 𝜇−(𝑧)}, 𝜇−(𝑦)} = max {𝜇−(𝑧)}, 𝜇−(𝑦)} and 

Also,  𝜇+(𝑥) ≥ min {𝜇+(𝑥 ∗ 𝑦), 𝜇+(𝑦)}  ≥ min {min {𝜇+((𝑥 ∗ 𝑦) ∗ 𝑧), 𝜇+(𝑧)}, 𝜇+(𝑦)} =
 min {min {𝜇+(0), 𝜇+(𝑧)}, 𝜇+(𝑦)} = min {𝜇+(𝑧)}, 𝜇+(𝑦)}.  
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Lemma 3.5: Let 𝜇 = (𝑋; 𝜇−, 𝜇+) be a bipolar fuzzy d-ideal of 𝑋. If 𝑥 ≤ 𝑦, then 𝜇−(𝑥) ≤
𝜇−(𝑦) and 𝜇+(𝑥) ≥  𝜇+(𝑦)  for all 𝑥, 𝑦 ∈  𝑋. 

 

Proof: Let 𝑥, 𝑦 ∈  𝑋 such that 𝑥 ≤ 𝑦. 

Then 𝑥 ∗ 𝑦 = 0. 

Now, 𝜇−(𝑥) ≤ max {𝜇−(𝑥 ∗ 𝑦), 𝜇−(𝑦)} = max {𝜇−(0), 𝜇−(𝑦)} ≤ 𝜇−(𝑦). 

Also, 𝜇+(𝑥) ≥ min {𝜇+(𝑥 ∗ 𝑦), 𝜇+(𝑦)} = min {𝜇+(0), 𝜇+(𝑦)} ≥ 𝜇+(𝑦). 

 

Theorem 3.6: Let 𝜇 = (𝑋; 𝜇−, 𝜇+) be a bipolar fuzzy d-ideal of 𝑋, then for any 

𝑥, 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑋 such that (… ((𝑥 ∗ 𝑥1) ∗ 𝑥2) ∗ … ∗ 𝑥𝑛) = 0 implies 𝜇−(𝑥) ≤
max {𝜇−(𝑥1), 𝜇−(𝑥2), … , 𝜇−(𝑥𝑛)} and 𝜇+(𝑥) ≥ min {𝜇+(𝑥1), 𝜇+(𝑥2), … , 𝜇+(𝑥𝑛)}. 

 

Proof: Proof is clear by using lemma:3.4, 3.5 and induction on 𝑛.  

  

Theorem 3.7: Every bipolar fuzzy d-ideal of 𝑋 is a bipolar fuzzy subalgebra of 𝑋. 

 

Proof: Let 𝜇 = (𝑋; 𝜇−, 𝜇+) be a bipolar fuzzy d-ideal 

Then 𝜇−(𝑥 ∗ 𝑦) ≤ 𝜇−(𝑥) ≤ 𝑚𝑎𝑥{𝜇−(𝑥 ∗ 𝑦), 𝜇−(𝑦)} ≤ 𝑚𝑎𝑥{𝜇−(𝑥), 𝜇−(𝑦)}   and 

 𝜇+(𝑥 ∗ 𝑦) ≥ 𝜇+(𝑥) ≥ min {𝜇+(𝑥 ∗ 𝑦), 𝜇+(𝑦)} ≥ 𝑚𝑖𝑛{𝜇+(𝑥), 𝜇+(𝑦)}. 

Thus 𝜇 is a bipolar fuzzy subalgebra of 𝑋. 

 

But every bipolar fuzzy subalgebra is not a bipolar d-ideal. 

 

Example 3.8: Consider a d-algebra 𝑋 =  {0, 1, 2,3} with the following Cayley table 

 

* 0 1 2 3 

0 0 0 0 0 

1 1 0 0 1 

2 2 1 0 2 

3 3 3 3 0 

Define a bipolar fuzzy se 𝜇 = (𝑋; 𝜇−, 𝜇+)t, where 𝜇+: 𝑋 → [0, 1] and  𝜇−: 𝑋 → [−1, 0] as  

 

𝜇−(𝑥) = {
−0.8,   𝑤ℎ𝑒𝑛 𝑥 = 0,1,3
−0.2,   𝑤ℎ𝑒𝑛 𝑥 ≠ 0,2

 and 𝜇+(𝑥) = {
0.7,   𝑤ℎ𝑒𝑛 𝑥 = 0,1,3

0.3,   𝑤ℎ𝑒𝑛 𝑥 = 2
 

 

Thus 𝜇 is a bipolar fuzzy subalgebra but not bipolar fuzzy d-ideal. 

 

Theorem 3.9: A bipolar fuzzy set 𝜇 = (𝑋; 𝜇−, 𝜇+) is a bipolar fuzzy ideal of 𝑋 if and only if 

𝜇−̅̅̅̅ and 𝜇+are fuzzy d-ideals  of 𝑋. 

 

Proof: Suppose 𝜇 = (𝑋; 𝜇−, 𝜇+) is a bipolar fuzzy d-ideal of 𝑋. 

Let 𝑥, 𝑦 ∈  𝑋. 

Now, (𝑖).  𝜇−̅̅̅̅ (𝑥) = 1 − 𝜇−(𝑥) ≥ 1 − max {𝜇−(𝑥 ∗ 𝑦), 𝜇−(𝑦)} = min {1 − 𝜇−(𝑥 ∗ 𝑦), 1 −
𝜇−(𝑦)} = min {𝜇−̅̅̅̅ (𝑥 ∗ 𝑦), 𝜇−̅̅̅̅ (𝑦)}  
(𝑖𝑖). 𝜇−̅̅̅̅ (𝑥 ∗ 𝑦) = 1 − 𝜇−(𝑥 ∗ 𝑦) ≥ 1 − 𝜇−(𝑥) = 𝜇−̅̅̅̅ (𝑥). 

Thus 𝜇−̅̅̅̅  is a fuzzy d-ideal of 𝑋. 

Clearly by definition 𝜇+ is fuzzy d-ideal of 𝑋. 

Conversely suppose that 𝜇−̅̅̅̅ and 𝜇+are fuzzy d-ideals of 𝑋. 

Let 𝑥, 𝑦 ∈  𝑋. 
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(𝑖). 𝜇−(𝑥) = 1 − 𝜇−̅̅̅̅ (𝑥) ≤ 1 − min {𝜇−̅̅̅̅ (𝑥 ∗ 𝑦), 𝜇−̅̅̅̅ (𝑦)} = max {1 − 𝜇−̅̅̅̅ (𝑥 ∗ 𝑦), 1 − 𝜇−̅̅̅̅ (𝑦)} =
max {𝜇−(𝑥 ∗ 𝑦), 𝜇−(𝑦)}.  

(𝑖𝑖). 𝜇−(𝑥 ∗ 𝑦) = 1 − 𝜇−̅̅̅̅ (𝑥 ∗ 𝑦) ≤ 1 − 𝜇−̅̅̅̅ (𝑥) = 𝜇−(𝑥)  

Thus 𝜇 = (𝑋; 𝜇−, 𝜇+) is a bipolar fuzzy d-ideal of 𝑋. 

 

Theorem 3.10: A bipolar fuzzy set 𝜇 = (𝑋; 𝜇−, 𝜇+) of 𝑋 is a bipolar fuzzy d-ideal of 𝑋 if and 

only if the level cuts are d-ideals of 𝑋 i.e., for all 𝑠 × 𝑡 ∈ [−1, 0] × [0, 1], ∅ ≠ 𝜇𝑠
𝑁 and  ∅ ≠

𝜇𝑡
𝑃 are d-ideals of 𝑋. 

  

Proof: Suppose 𝜇 = (𝑋; 𝜇−, 𝜇+) is a bipolar fuzzy d-ideal. 

Let 𝑠 × 𝑡 ∈ [−1,0] × [0, 1] such that 𝜇𝑠
𝑁 ≠  ∅ and 𝜇𝑡

𝑃 ≠  ∅. 

(I). Let 𝑔 ∗  ℎ, ℎ ∈  𝜇𝑠
𝑁. 

That implies 𝜇−(𝑔 ∗ ℎ) ≤ 𝑠, 𝜇−(ℎ) ≤ 𝑠. 

Since 𝜇 = (𝑋; 𝜇−, 𝜇+) is a bipolar fuzzy subalgebra, we have  

 𝜇−(𝑔) ≤ 𝑚𝑎𝑥{𝜇−(𝑔 ∗ ℎ), 𝜇−(ℎ)} ≤ 𝑠 

⇒ 𝑔 ∈ 𝜇𝑠
𝑁. 

(ii). Let 𝑔 ∈  𝜇𝑠
𝑁 and ℎ ∈ 𝑋. 

That implies 𝜇−(𝑔) ≤ 𝑠. 

Since 𝜇 = (𝑋; 𝜇−, 𝜇+) is a bipolar fuzzy d-ideal, we have  𝜇−(𝑔 ∗ ℎ) ≤ 𝜇−(𝑔) ≤ 𝑠. 

⇒ 𝑔 ∗ ℎ ∈ 𝜇𝑠
𝑁 

Thus 𝜇𝑠
𝑁 is a d-ideal of 𝑋. 

(iii). Also, let 𝑥 ∗ 𝑦, 𝑦 ∈  𝜇𝑡
𝑃. 

That implies  𝜇+(𝑥 ∗ 𝑦) ≥ 𝑡 𝑎𝑛𝑑 𝜇+(𝑦)} ≥ 𝑡. 

Since 𝜇 = (𝑋; 𝜇−, 𝜇+) is a bipolar fuzzy d-ideal, we have  

 𝜇+(𝑥) ≥ 𝑚𝑖𝑛{𝜇+(𝑥 ∗ 𝑦), 𝜇+(𝑦)} ≥ 𝑡. 

⇒ 𝑥 ∈ 𝜇𝑡
𝑃. 

(iv). Let 𝑥 ∈  𝜇𝑡
𝑃 and 𝑦 ∈ 𝑋. 

That implies 𝜇+(𝑥) ≥ 𝑡. 

Since 𝜇 = (𝑋; 𝜇−, 𝜇+) is a bipolar fuzzy d-ideal, we have  𝜇+(𝑥 ∗ 𝑦) ≥ 𝜇+(𝑥) ≥ 𝑡. 

⇒ 𝑥 ∗ 𝑦 ∈ 𝜇𝑡
𝑃 

Therefore 𝜇𝑡
𝑃 is a d-ideal of 𝑋. 

Thus 𝜇𝑠
𝑁 and  𝜇𝑡

𝑃 are d-ideals of 𝑋. 

Conversely suppose that the level cuts 𝜇𝑠
𝑁 and  𝜇𝑡

𝑃 are d-ideals of 𝑋, for all 𝑠 × 𝑡 ∈ [−1, 0] ×
[0, 1]. 
Let 𝑥, 𝑦 ∈ 𝑋 such that  𝜇−(𝑥) > 𝑚𝑎𝑥{𝜇−(𝑥 ∗ 𝑦), 𝜇−(𝑦)}. 

Take 𝑠0 =
1

2
(𝜇−(𝑥) + max{𝜇−(𝑥 ∗ 𝑦), 𝜇−(𝑦)}), where 𝑠0 ∈ [−1, 0]. 

That implies max{𝜇−(𝑥 ∗ 𝑦), 𝜇−(𝑦)} < 𝑠0 < 𝜇−(𝑥). 

So, 𝑥 ∗ 𝑦, 𝑦 ∈ 𝜇𝑠0
𝑁  and 𝑥 ∉ 𝜇𝑠0

𝑁 . 

Which is a contradiction to 𝜇𝑠0
𝑁  is a d-ideal. 

Hence  𝜇−(𝑥) ≤ 𝑚𝑎𝑥{𝜇−(𝑥 ∗ 𝑦), 𝜇−(𝑦)}. 

Again let 𝑥, 𝑦 ∈ 𝑋 such that  𝜇−(𝑥 ∗ 𝑦) > 𝜇−(𝑥). 

Take 𝑠0 =
1

2
(𝜇−(𝑥 ∗ 𝑦), 𝜇−(𝑥)). 

That implies 𝜇−(𝑥 ∗ 𝑦) < 𝑠0 < 𝜇−(𝑥). 

So, 𝑥 ∈ 𝜇𝑠0
𝑁  and 𝑥 ∗ 𝑦 ∉ 𝜇𝑠0

𝑁 . 

Which is a contradiction to 𝜇𝑠0
𝑁  is a d-ideal. 

Hence  𝜇−(𝑥 ∗ 𝑦) ≤ 𝜇−(𝑥) 

Let 𝑥, 𝑦 ∈ 𝑋 such that  𝜇+(𝑥) < 𝑚𝑖𝑛{𝜇+(𝑥 ∗ 𝑦), 𝜇+(𝑦)}. 
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Take 𝑡0 =
1

2
(𝜇+(𝑥) + min{𝜇+(𝑥 ∗ 𝑦), 𝜇+(𝑦)}), where 𝑡0 ∈ [0, 1]. 

That implies 𝜇+(𝑥) < 𝑡0 < min {𝜇+(𝑥 ∗ 𝑦), 𝜇+(𝑦)}. 

So, 𝑥 ∗ 𝑦, 𝑦 ∈ 𝜇𝑡0
𝑃  and 𝑥 ∉ 𝜇𝑡0

𝑃 . 

Which is a contradiction to 𝜇𝑡0
𝑃  is a d-ideal. 

Hence  𝜇+(𝑥) ≥ 𝑚𝑖𝑛{𝜇+(𝑥 ∗ 𝑦), 𝜇+(𝑦)}. 

Again let 𝑥, 𝑦 ∈ 𝑋 such that  𝜇+(𝑥 ∗ 𝑦) < 𝜇+(𝑥). 

Take 𝑡0 =
1

2
(𝜇+(𝑥 ∗ 𝑦), 𝜇+(𝑥)). 

That implies 𝜇+(𝑥 ∗ 𝑦) < 𝑡0 < 𝜇+(𝑥). 

So, 𝑥 ∈ 𝜇𝑡0
𝑃  and 𝑥 ∗ 𝑦 ∉ 𝜇𝑡0

𝑃 . 

Which is a contradiction to  𝜇𝑡0
𝑃  is a d-ideal. Hence  𝜇+(𝑥 ∗ 𝑦) ≥ 𝜇+(𝑥) 

Thus 𝜇 = (𝑋; 𝜇−, 𝜇+) of 𝑋 is a bipolar fuzzy d-ideal of 𝑋. 

 

Theorem 3.11: Let 𝑓 be a homomorphism from a d-algebra 𝑋 onto a d-algebra 𝑌. Let 𝜎 be a 

bipolar fuzzy d-ideal of 𝑌, then the pre-image 𝑓−1(𝜎) of 𝜎 is a bipolar fuzzy d-ideal of 𝑋. 

 

Proof: Let 𝑥, 𝑦 ∈  𝑋. 

Now, 

(𝑖). (𝑓−1(𝜎))−(𝑥) = 𝜎−(𝑓(𝑥))  

                                ≤ max{𝜎−(𝑓(𝑥 ∗ 𝑦)), 𝜎−(𝑓(𝑦))} 

                                = max {(𝑓−1(𝜎))−(𝑥 ∗ 𝑦), (𝑓−1(𝜎))−(𝑥)}  

(𝑖𝑖). (𝑓−1(𝜎))−(𝑥 ∗ 𝑦) = 𝜎−(𝑓(𝑥 ∗ 𝑦)) ≤ 𝜎−(𝑓(𝑥)) = (𝑓−1(𝜎))−(𝑥)        

(𝑖𝑖𝑖). (𝑓−1(𝜎))+(𝑥) = 𝜎+(𝑓(𝑥))  

                               ≥ min{𝜎+(𝑓(𝑥 ∗ 𝑦)), 𝜎+(𝑓(𝑦))} 

                               = min {(𝑓−1(𝜎))+(𝑥 ∗ 𝑦), (𝑓−1(𝜎))+(𝑥)}  

(𝑖𝑣). (𝑓−1(𝜎))+(𝑥 ∗ 𝑦) = 𝜎+(𝑓(𝑥 ∗ 𝑦)) ≥ 𝜎+(𝑓(𝑥)) = (𝑓−1(𝜎))+(𝑥).               

Thus 𝑓−1(𝜎) is a bipolar fuzzy d-ideal of 𝑋. 

 

Theorem 3.12: Let 𝑓 be a homomorphism from a d-algebra 𝑋 onto a d-algebra 𝑌. Let 𝜇 be a 

bipolar fuzzy d-ideal of 𝑋, then the homomorphic image 𝑓(𝜇) of 𝜇 is a bipolar fuzzy d-ideal 

of 𝑌. 

 

Proof: Let 𝑥, 𝑦 ∈  𝑌. 

Suppose neither 𝑓−1(𝑥) nor 𝑓−1(𝑦) is non-empty. 

since 𝑓 is homomorphism and so there exist 𝑎, 𝑏 ∈ 𝑋 such that 𝑓(𝑎)  =  𝑥 and 𝑓(𝑏)  =  𝑦 it 

follows that 𝑎 ∗ 𝑏 ∈  𝑓−1(𝑥 ∗ 𝑦). 

Now, 

(𝑖). (𝑓(𝜇))
−

(𝑥) = max {𝜇−(𝑧)/𝑧 ∈ 𝑓−1(𝑥)} 

                            ≤ max {max {𝜇−(𝑎 ∗ 𝑏), 𝜇−(𝑏)}/𝑎 ∈ 𝑓−1(𝑥), 𝑏 ∈ 𝑓−1(𝑦)} 

                            = max {max {𝜇−(𝑎 ∗ 𝑏)/𝑎 ∈ 𝑓−1(𝑥)}, max {𝜇−(𝑏)/ 𝑏 ∈ 𝑓−1(𝑦)}} 

      = max {(𝑓(𝜇))
−

(𝑥 ∗ 𝑦), (𝑓(𝜇))
−

(𝑦)} 

(𝑖𝑖). (𝑓(𝜇))−(𝑥 ∗ 𝑦) = max {𝜇−(𝑧)/𝑧 ∈ 𝑓−1(𝑥 ∗ 𝑦)} 

             ≤ max {𝜇−(𝑎 ∗ 𝑏)/𝑎 ∈ 𝑓−1(𝑥), 𝑏 ∈ 𝑓−1(𝑦)} 

                                   ≤ max {𝜇−(𝑎)} /𝑎 ∈ 𝑓−1(𝑥)} 

                                   = (𝑓(𝜇))
−

(𝑥) 

(𝑖𝑖𝑖). (𝑓(𝜇))
+

(𝑥) = max {𝜇+(𝑧)/𝑧 ∈ 𝑓−1(𝑥)} 

                           ≥ max {min {𝜇+(𝑎 ∗ 𝑏), 𝜇+(𝑏)} /𝑎 ∈ 𝑓−1(𝑥), 𝑏 ∈ 𝑓−1(𝑦)} 
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                           = min {max {𝜇+(𝑎 ∗ 𝑏)/𝑎 ∈ 𝑓−1(𝑥)}, max {𝜇+(𝑏)/ 𝑏 ∈ 𝑓−1(𝑦)}} 

     = min {(𝑓(𝜇))
+

(𝑥 ∗ 𝑦), (𝑓(𝜇))
+

(𝑦)} 

(𝑖𝑣). (𝑓(𝜇))+(𝑥 ∗ 𝑦) = max {𝜇+(𝑧)/𝑧 ∈ 𝑓−1(𝑥 ∗ 𝑦)} 

            ≥ max {𝜇+(𝑎 ∗ 𝑏)/𝑎 ∈ 𝑓−1(𝑥), 𝑏 ∈ 𝑓−1(𝑦)} 

                                  ≥ max {𝜇+(𝑎)} /𝑎 ∈ 𝑓−1(𝑥)} 

                                  = (𝑓(𝜇))
+

(𝑥) 

Thus 𝑓(𝜇) is a bipolar fuzzy d-ideal of 𝑌. 
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